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Abstract 10 

Since its publication in 2004, the Stephens-MacCall method has been widely used as an 11 

objective approach to select a subset of fisher-reported trip catch and effort data relevant to a 12 

given analysis. This paper demonstrates the undesired effects of using a classification cutoff 13 

threshold as originally proposed and offers a weighting alternative which makes use of complete 14 

information in the dataset and fitted model. Simple spatiotemporal additions to the original 15 

model resulting in improved predictive performance are also presented. These modifications are 16 

illustrated with application to commercial red snapper reported in the U.S. South Atlantic and 17 

Gulf of Mexico. 18 

 19 

1. Introduction 20 

Generating unbiased indices of abundance using fishery-dependent data requires a 21 
mechanism of identifying trips that are likely to have targeted a species of interest. That is, due 22 
to the positives-only nature of fisher reports, a mechanism must be employed to classify trips on 23 

which a species was likely targeted but not caught or caught but not necessarily targeted. To 24 
address this difficulty, Stephens and MacCall (2004) proposed a method to estimate the 25 
probability that a given trip occurred in the habitat of a target species based on the total species 26 

composition of the trip using a Bernoulli generalized linear model (GLM). Only those trips 27 
classified as targeted according to some threshold are retained for calculating catch-per-unit-28 

effort (CPUE). This procedure has been widely used as a trip selection approach in the 29 
southeastern United States. It was first used for the 2006 stock assessments of Gulf of Mexico 30 
vermilion snapper, greater amberjack, and gray triggerfish (SEDAR 2006), and is still employed 31 

in current stock assessments (SEDAR 2020a, b) and other research (Carruthers et al., 2015; 32 

Ducharme-Barth et al., 2018). 33 
While simple and effective, the subjectivity of selecting a threshold has been identified as a 34 

primary drawback to this approach (Thorson et al., 2016). As an alternative to deciding on an 35 

arbitrary cutoff, a more defensible replacement for subsetting trips is proposed here which makes 36 
use of the complete set of model estimated target probabilities as weights on the full dataset 37 

directly in the calculation of CPUE. In addition, the Stephens-MacCall model was originally 38 
developed for use in a recreational fishery with unknown fishing location. Accounting for 39 
spatiotemporal variation has been shown to reduce bias in abundance indices (Thorson et al. 40 
2016). Given that information on trip date, fishing area, and fishing depth is collected on 41 

Southeast Coastal Logbook forms, the positive predictive effect of these variables as additional 42 
covariates is illustrated with respect to target probabilities. The impact of these modifications on 43 
estimated CPUE is illustrated for red snapper as reported by federally permitted vessels in the 44 

southeastern U.S. Atlantic (hereafter Atlantic) and Gulf of Mexico in 2019. 45 
While more sophisticated techniques have been since proposed in the literature to address the 46 

issue of CPUE calculation in multispecies fisheries (Winker et al., 2013; Thorson et al., 2015), 47 
the suggested modifications to the Stephens-MacCall classification threshold approach as well as 48 

some simple spatiotemporal additions to improve model performance will have a direct impact 49 
on current and future fish stock assessments in the southeastern United States and other regions 50 
due to the method’s ubiquity. 51 
 52 
 53 



 

 

2. Materials and methods 54 

 55 
2.1 Original model 56 

Stephens and MacCall (2004) proposed a logistic regression on binary presence-absence of a 57 

given species of interest yj with presence-absence of all other potentially co-reported species (1, 58 

2, …, k) as binary predictors to estimate the probability 𝑝̂ that trip j occurred in the habitat of the 59 

target species (Eq. 1). 60 

𝑝̂𝑗 =
1

1+ 𝑒
− ∑ 𝛽𝑖𝑥𝑖𝑗

𝑘
𝑖=0

            (1) 61 

 62 

A classification threshold pcrit is then determined, at which trips with higher model 63 
predicted probabilities are defined as “targeted” and those with lower model predicted 64 

probabilities are defined as “non-targeted”. The original text proposes an empirical determination 65 

of the classification threshold pcrit based entirely on the in-sample misclassification rate of the 66 
fitted model. That is, it intends to minimize the sum of the false positive and false negative 67 

predictions based on predicted target species presence-absence 𝑦̂𝑗 given pcrit, with the observed 68 

target species presence-absence 𝑦𝑗 on each trip defined as the truth (Eq. 2). 69 

 70 

𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝑐𝑟𝑖𝑡
(∑ |𝑦𝑗  – (𝑦̂𝑗  | 𝑝𝑐𝑟𝑖𝑡)|𝑗 )        (2) 71 

There is a discrepancy, however, in the way this calculation is carried out, as the described 72 

procedure actually minimizes the difference between total true-positive trips and total predicted 73 

positive trips (Eq. 3), rather than minimizing the total misclassification rate. 74 

𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝑐𝑟𝑖𝑡
(|∑ 𝑦𝑗  –  ∑ 𝑦̂𝑗  | 𝑝𝑐𝑟𝑖𝑡𝑗𝑗 |)        (3) 75 

Differences in threshold behavior are visualized by applying each method to artificial Bernoulli 76 
data with a single continuous predictor constructed to provide a simple 2D illustration of how 77 

each classification scheme can lead to different results, while also showing how each can be 78 
derived independently of the fitted logistic model (Fig. 1). The original procedure was applied to 79 
the 2019 commercial red snapper data to compare performance with revised models (Tbl. 1). 80 
Model fitting was conducted using the glm function with family = “binomial” in R 4.0.4 (R Core 81 
Team, 2021). 82 
 83 
 84 
2.2 Model fitting improvements 85 

Prior to assessing the impact of classification alternatives, a variety of modifications to 86 
the original model were considered to potentially improve performance for estimating predicted 87 
probabilities. Considered changes included the use of species weight (both square root 88 
transformed and relative proportions) instead of simply presence as predictor variables in the 89 
regression to see if catch magnitudes offered improvements over simple presence-absence, the 90 

addition of two-way interactions to capture how species potentially interact to associate with 91 
target probabilities, the addition of a vessel random effect to account for the grouped nature of 92 
trips taken on the same vessel, and the addition of spatiotemporal terms (fishing region, month, 93 



 

 

fishing depth and two-way interactions) to account for how target probabilities differ with space 94 
and time. 95 

The efficacy of these changes were assessed as applied to a variety of snapper-grouper 96 

species reported in 2019 NOAA Southeast Coastal Fisheries Trip Report Forms (Coastal 97 
Logbook, OMB: 0648-0016). Data consist of trip level information including vessel identifier 98 
and trip start and unload dates, along with fishing area (allowing for classification by region) and 99 
fishing depth for each species. The 2019 version of the coastal logbook form contains 62 listed 100 
species with space for write-ins. This allows models to be built with a target species of interest as 101 

the binary response while using all remaining finfish species as predictors. 102 
A final set of models with the successful modifications are presented for combined 103 

Atlantic and Gulf of Mexico red snapper and compared by Akaike’s Information Criterion 104 
(AIC). While each region (Atlantic, Gulf of Mexico) is traditionally modeled separately in 105 
Southeast red snapper stock assessments for various biological and management reasons, the 106 

regions were kept combined here as an illustrative exercise to allow the explicit demonstration of 107 
regional differences through interaction terms. For simplicity, gear type was also not considered 108 

due to complexities that arise when dealing with multiple gear types on the same trip. Predictive 109 
performance and discriminative ability of the final selected model was compared to that using 110 

the original Stephens-MacCall methodology as assessed by McFadden’s pseudo R2 and Somers’ 111 
D, respectively (Tbl. 1). 112 

 113 

2.3 Classification alternatives 114 

To assess the performance of the logistic regression as a classification model, the 115 

proportion of predicted probabilities that fell very close to zero or one was examined. A large 116 

proportion of intermediate probabilities would be an indication the model does not have enough 117 

information to make confident binary classifications. Trips were assigned to one of three 118 

categories of prediction confidence (non-targeted, possibly targeted, very likely targeted) based 119 

on the points of diminishing return on the empirical cumulative distribution function (eCDF) 120 

(Fig. 2) of the model predicted probabilities, defined here as 121 

𝑎𝑟𝑔𝑚𝑎𝑥𝑥(𝐹(𝑥) − 𝑥)          (4) 122 

for the lower bound, and 123 

 124 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥(𝐹(𝑥) − 𝑥)          (5) 125 
for the upper bound. 126 
 127 

Trips with predicted probabilities falling at or below the lower bound were determined to be 128 

confident negatives (non-targeted), trips at or above the upper bound confident positives (very 129 
likely targeted), and trips in between uncertain (possibly targeted). The total number of trips 130 
falling in each category is presented for both the original and revised red snapper models (Tbl. 131 
2). 132 

 Rather than rely on a binary classification rule where all trips above a threshold are 133 
treated as certainly targeted and all those below are excluded entirely, a natural solution that 134 
incorporates target uncertainty among all trips is to use the model estimated probabilities directly 135 
as precision weights for each observation when calculating an index. This has the effect of giving 136 

full weight to trips that are very likely targeting a species (𝑝̂ close to 1) while effectively 137 



 

 

excluding trips with 𝑝̂ close to zero from the calculation. All trips are retained with influence 138 
proportional to their estimated target probabilities. In a regression setting, this amounts to 139 

minimizing the weighted sum of squares when calculating parameter values (Eq. 6) and 140 
associated variances (Eq. 7): 141 
 142 

𝛽̂ = (𝒙𝑇𝒘𝒙)−1𝒙𝑇𝒘𝒚          (6) 143 
 144 

𝑣𝑎𝑟(𝛽̂) = 𝜎̂2(𝒙𝑇𝒘𝒙)−1         (7) 145 

 146 
where x is a vector of the explanatory variable (e.g., effort), y is the response vector (e.g., catch), 147 
w is a vector of the weights (estimated target probabilities). 148 
 149 
The estimated residual variance for a weighted regression with p parameters (Eq. 8) is defined 150 

as: 151 
 152 

𝜎̂2 =
∑ 𝑤𝑖(𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

𝑛−𝑝
          (8) 153 

 154 

In the simplest case of an intercept only model, 𝛽̂ is equivalent to calculating a weighted 155 

arithmetic mean of the observed values (Eq. 9): 156 
 157 

𝑦̅ =  
∑ 𝑤𝑖𝑦𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

           (9) 158 

 159 
This approach was applied to the 2019 red snapper presence-absence data using the lm 160 

function in R to fit an intercept only model (i.e., assuming all trips had equal effort), with the 161 

logistic model predicted probabilities supplied to the “weights” argument. The same principle 162 

could be employed in a GLM setting (glm function), where the supplied weights indicate the 163 
inverse dispersion of each observation. In a practical setting, the presence-absence response 164 

variable would be replaced with total catch and the intercept with an effort measure. 165 
Note that estimated weights below a set tolerance may need to be manually set to zero to 166 

ensure that very small decimals arising from machine floating point precision are not included in 167 

degrees of freedom calculations when variance is of concern. Calculating the weighted estimate 168 
using only trips with estimated probabilities falling above the lower bound in Eq. (4) could be a 169 
practical way to achieve this with minimal impact on estimates, depending on the distribution of 170 
predicted probabilities. The impact of this on estimated CPUE for red snapper is presented and 171 
contrasted against estimates obtained from subsetting the dataset according to various binary 172 

thresholds (Tbl. 3). 173 
 174 
 175 
3. Results 176 

3.1 Model fitting improvements 177 

The following considered changes were abandoned either due to lack of improvement or 178 

infeasible implementation in test scenarios. 179 



 

 

1. Use of (square root transformed) species weights instead of presence-absences as 180 

predictors: 181 

This resulted in reduced predictive performance according to AIC. The additional 182 

noise introduced by using total weight or square root transformed outweighed the benefit 183 

of the added information. 184 

2. Use of proportions of total co-occurring species weight instead of presence-absence as 185 

predictors: 186 

This also resulted in no improvement in predictive performance, and often models 187 

did not converge. 188 

3. Addition of (2-way) interaction terms to presence-absence main effects: 189 

Interactions proved computationally burdensome to implement. For example, a 190 

logbook with 175 possible non-target species produces (175
2

) = 15,225 additional terms to 191 

estimate. 192 

4. Addition of a vessel random effect: 193 

Models did not converge successfully. 194 

In contrast, the changes below resulted in models with improved predictive performance and 195 

successful convergence under a variety of test scenarios. 196 

1. The addition of landing month as a categorical predictor: 197 

The addition of a month variable resulted in substantially improved models 198 

according to AIC. The addition of temporal information at this level resulted in better 199 

predictive performance than collapsing to the season level (i.e., winter, spring, summer, 200 

fall). 201 

2. The addition of fishing region as a categorical predictor: 202 

The interaction of fishing region with month was included, allowing the effect of 203 

landing month to vary by region, for which there was evidence. This may also be a useful 204 

consideration for finer-scale fishing areas if this information is available. 205 

3. The addition of fishing depth as a polynomial spline covariate: 206 

Fishing depth can be a valuable proxy of the species being targeted, even if 207 

reported depths are not completely accurate. Average fishing depth reported among the 208 

non-target species was taken as a trip level covariate, which proved preferable to using 209 

the trip level median or maximum. Due to the non-linear relationship of target probability 210 

with depth, predictive performance was maximized by including depth as a polynomial 211 

spline term (df = 25) (Tbl. 1). A depth and region interaction term was selected, allowing 212 

the effect of depth on target probability to vary between the Atlantic and Gulf of Mexico. 213 

The addition of a depth by month interaction was considered but ultimately excluded due 214 

to unsuccessful model convergence. 215 

In quantifying these successful additions, logistic model predictive performance as 216 
assessed by AIC for 2019 Southeast coastal trips with red snapper as the species of interest (n = 217 
33,671 region trips; data as of 27 Feb 2021) indicated that the addition of region, month, depth, 218 
depth x region and month x region resulted in the best model among those assessed (Tbl. 1). AIC 219 
was substantially reduced from the original model relying on only species presence-absence as 220 
predictors. Notice the improved separation of the estimated target probabilities toward zero and 221 



 

 

one in the empirical CDFs under the selected revised model as compared to the original (Fig. 2). 222 
While results are only presented for red snapper, it should be noted that similar improvements in 223 
model fit were realized for other species (e.g., vermilion snapper, yellowtail snapper, etc.) when 224 

the additional spatiotemporal covariates were included. 225 
A comparison between trips selected by the final model in Tbl. 1 (pcrit = 0.5) vs. trips 226 

selected by the original Stephens-MacCall method (also using pcrit = 0.5) shows that the majority 227 
of selected trips were common to both models, but among the records unique to each method, the 228 
revised model selected a much higher proportion of positive trips, and therefore had an overall 229 

higher percent positive rate (85.7% vs. 77.5%). 6,227 trips reported red snapper catch in the 230 
observed data. The revised model also exhibited a substantially higher pseudo-R2 (0.73 vs. 0.50) 231 
and Somers’ D (0.96 vs. 0.86), suggesting a superior fit and discriminative ability with the added 232 
covariates (both range from 0 to 1) (Tbl. 4). 233 

Using pcrit as originally calculated (0.405) with the original model compared to the same 234 

model with pcrit set to 0.5, 1,660 trips predicted to be more likely not targeting than targeting red 235 
snapper would have been included in the selected subset (78.6% of which were subsequently 236 

selected by the model with additional covariates at pcrit = 0.5). 237 
 238 

3.2 Classification alternatives 239 

The two classification methods in Eq. (2) and Eq. (3) may lead to different results, as 240 
illustrated with artificial data (Fig. 2). It is not clear that anything meaningful is being optimized 241 
by Eq. (3); the justification for minimizing the difference between observed positive and 242 

predicted positive trips is ambiguous. Observe in Fig. 1 that the total misclassification threshold 243 
as defined by Eq. (2) shifts left to capture one additional negative trip to balance the positive trip 244 

outlier, and that both thresholds defined by Eqs. (2) and (3) can be identified visually from the 245 
observed data, independent of the fitted logistic model. 246 

As is evident in Fig. 2, a majority of total trips under the revised model could be 247 
confidently classified as “non-targeted”, of which only 0.2% and 1.9% were observed to have 248 

caught red snapper as classified by the revised and original models, respectively (Tbl. 2). A 249 
much smaller number of trips were classified as “very likely targeted”, though a greater number 250 
achieved this designation in the revised model due to its superior predictive performance. In both 251 

models, the number of trips in the “very likely” category is much lower than the total number of 252 
trips with observed red snapper catch (6,227), suggesting this would be an unsuitable cutoff and 253 
likely overestimate CPUE. It is clear that trips in the “possibly targeted” category must 254 

contribute to the calculation in some way, and rather than being subset according to an arbitrary 255 
cutoff, this can be done through trip weighting. 256 

If the full unweighted dataset were used to calculate CPUE (defined here for illustrative 257 
purposes as number of trips with red snapper catch over number of total trips), the result is of 258 

course biased low (0.185, Tbl. 3), hence the initial need for the Stephens-MacCall approach to 259 
identify which trips are likely actually targeting the species of interest. When the calculation is 260 
done with the confidently “non-targeted” trips removed (i.e., those with predicted probabilities 261 

below the lower point of diminishing returns on the empirical CDF), the estimates become more 262 
realistic (original model: 0.504, revised model: 0.547), but are likely still underestimates since 263 
full and equal weight is given to every trip in the remaining subset regardless of its predicted 264 
target probability. 265 

Likewise, performing the calculation using only trips with predicted probabilities greater 266 
than 0.5 lessens the impact of treating all lower probability trips equally (original model: 0.775, 267 



 

 

revised model: 0.857), but at the same time has the disadvantage of completely discarding all 268 
low probability trips, some of which may have been truly targeted. The weighted estimates 269 
mitigate these concerns by allowing every trip to influence the calculation directly in proportion 270 

to its predicted target probability (original model: 0.622, revised model: 0.787). The higher 271 
revised model estimate is reflective of the improved ability of the model to discern between very 272 
low target probability (estimates closer to zero) and very high target probability (estimates closer 273 
to one) trips, illustrating the importance of selecting an accurate underlying model to generate 274 
the predicted target probabilities. Completely removing “non-targeted” trips before weighting 275 

had minimal impact on the weighted estimate under the revised model (all trips included: 0.787, 276 
non-targeted trips removed: 0.791) (Tbl. 3). 277 
 278 

4. Discussion 279 

The original Stephens-MacCall model provides a simple and useful approach for 280 
assigning target probabilities to multispecies logbook reported trips based strictly on the presence 281 

and absence of potentially co-reported species. Regardless of the inconsistency in critical value 282 
calculation, the threshold adjustment approach based on minimizing the in-sample 283 

misclassification rate is fundamentally flawed, and amounts to an extreme overfitting to the data 284 
which will lead to an incorrect model (Harrell 2015). In fact, decision rules to arrive at the same 285 
results as those provided by Eqs. (2) and (3) can be derived simply from the data without even 286 

fitting a logistic model. The originally proposed in-sample post-hoc classification threshold 287 
should not be used to avoid overriding the logistic model and maximum likelihood estimation 288 

entirely, and the cutoff value pcrit should either 1) be set to 0.5 as a starting point or determined 289 
according to a cost function based on prior expert opinion if a threshold must be used, or 2) be 290 
abandoned entirely in favor of using the estimated target probabilities as weights on the complete 291 

dataset when calculating CPUE. The second option is recommended as it eliminates the need to 292 

select a cutoff which may alter indices substantially depending on how it is defined, but instead 293 

makes use of the full dataset without unnecessarily discarding information or forcing the analyst 294 
to make a subjective decision. This also eliminates the undesirable effect of applying arbitrarily 295 

inconsistent cutoffs among species which may be sensitive to the distribution of modeled 296 
probabilities. The weighting of individual observations is widely supported within regression 297 
functions across standard statistical software and should prove easy to implement in practice. 298 

Note that the proposed modification to the probability threshold alone is not expected to 299 
change indices consistently in any one direction as it can be essentially arbitrary where the 300 

Stephens-MacCall pcrit value happens to fall relative to 0.5. The three category classification 301 
scheme provided further demonstration that estimated CPUE can be very sensitive to which 302 
threshold is chosen. These points become irrelevant under the trip weighting alternative. In any 303 
scenario, the target probabilities estimated by the model are assumed to be correct. If the 304 

underlying model is flawed, estimates of CPUE based on this approach may be biased. 305 
Regarding revisions to data inputs, the use of presence-absence as binary predictors 306 

proved preferable to alternate formulations considered such as total species weights or 307 

proportions of total weight. Additional model complexity such as vessel random effects and 308 
species interactions also proved unsuccessful to implement. 309 

Depth, region, and month, along with the interactions of month by region and depth by 310 
region each provided substantial improvement to model predictive performance and resulted in a 311 
final model with a higher proportion of positive records selected. This is intuitive, as a particular 312 
species is likely to be targeted differently over the course of a year, which itself is likely to differ 313 



 

 

by region and depth due to both biological and management considerations. The inclusion of 314 
these predictors may be used as a starting point for future modeling efforts with data from a 315 
broad spatial or temporal range, adding or dropping terms as appropriate for a given scenario to 316 

better capture fisher behavior. Evidence for the interaction of region with month and fishing 317 
depth also lends additional support to modeling each region separately in stock assessments. 318 

While the interaction of landing month and region may serve as a crude proxy to capture 319 
in-season regulations (e.g., closures), temporal regulations should generally be considered 320 
explicitly at the appropriate geographic level when available in choosing a candidate frame of 321 

data to subset. Additionally, though not considered here, model performance could likely be 322 
enhanced by explicitly defining closed periods for predictor species if this information is 323 
available; that is, defining each observation according to three possible categories of “closed”, 324 
“open but absent”, and “present” rather than simply present/absent, as the closure of a certain 325 
group of species may provide valuable information about the target probability of another. 326 

These simple revisions can immediately impact CPUE calculations as applied to 327 
multispecies logbook data, resulting in more statistically valid indices of abundance, especially 328 

in Southeastern U.S. stock assessments where the method is widely used. Implementation of 329 
these changes should also be explored for other regions, species, and data sources that rely on the 330 

Stephens-MacCall approach for analyzing multispecies data. 331 
 332 
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 376 

Fig. 1. Illustration of difference in classification thresholds applied to 34 artificial binary data points. 377 
Vertical lines from left to right indicate: 1. Maximum likelihood logistic model classification threshold 378 
pcrit = 0.5, i.e., the point at which the model estimates a trip is more likely targeted than non-targeted 379 
(solid line); 2. Threshold that minimizes difference between observed positive trips and predicted positive 380 
trips (Eq. 3) (dashed line); 3. Threshold that minimizes total misclassification rate (Eq. 2) (dotted line). 381 
Circles denote correct classification of observed values and x’s denote incorrect classifications under pcrit 382 
= 0.5 assuming observed values are the truth. Notice the dashed and dotted line thresholds no longer rely 383 
on the logistic model and can be derived independently based on the observed values. The threshold as 384 
defined by Eq. (3) shifts the Eq. (2) threshold left to capture one additional negative trip to balance the 385 
positive trip outlier in upper left.  386 



 

 

 387 

Fig. 2. Empirical cumulative distribution functions (eCDFs) of logistic model estimated target 388 
probabilities under original Stephens-MacCall model with only binary species predictors (solid red) and 389 
under revised model (last row Tbl. 1) with additional spatiotemporal predictors (dashed blue). Greater 390 
separation (vertical distance) along the edges with a flatter horizontal section is reflective of a more 391 
informative model. Markers represent points of diminishing returns to define trips that were very likely 392 
not targeted (at or below left marker, Eq. 4) or very likely targeted (at or above right marker, Eq. 5).  393 



 

 

Model p AIC Δ AIC 

Intercept only 1 32,245 22,920 

Original 176 16,369 7,044 

Original + Depth 201 15,094 5,769 

Original + Region 177 15,036 5,711 

Original + Month 187 14,342 5,017 

Original + Depth + Region 202 13,842 4,517 

Original + Depth + Month 212 13,204 3,879 

Original + Region + Month 188 11,947 2,622 

Original + Depth + Region + Month 213 11,059 1,734 

Original + Month + Depth * Region 238 10,733 1,408 

Original + Depth + Region * Month 224 9,486 161 

Original + Depth * Region + Region * Month 249 9,325 0 

 394 
Tbl 1. Model selection table for logistic regressions fit to 2019 red snapper commercial logbook data to 395 
estimate predicted probabilities. “Original” denotes Stephens-MacCall model with only co-occurring 396 
species as predictors. Note AIC reductions in all cases with added spatiotemporal covariates. Interaction 397 
terms include all corresponding main effects. 398 
 399 
 400 

 401 

  Original Revised 

Non-targeted 22,159 1.9% 22,354 0.2% 

Possibly targeted 10,974 48.2% 10,151 49.8% 

Very likely targeted 538 95.9% 1,166 97.5% 

 402 
Tbl. 2. Total 2019 commercial trips classified by likelihood of targeting red snapper according to 403 
empirical CDF thresholds of predicted probabilities from the original Stephens-MacCall model and final 404 
revised model with additional covariates. Percentages represent proportion observed trips with red 405 
snapper catch in each category. Note the relatively lower proportion of observed catch in trips classified 406 
as non-targeted and relatively higher proportion of observed catch in trips classified as very likely 407 
targeted under the revised model compared to the original model, indicating an improvement in 408 
classification performance. 409 
  410 



 

 

 
Original Revised 

Raw dataset 0.185 

"Non-targeted" trips removed 0.504 0.547 

Weighted estimate (all trips) 0.622 0.787 

Weighted estimate (“non-targeted” trips removed) 0.686 0.791 

Trips with ppred > 0.5 0.775 0.857 

 411 
Tbl. 3. Comparison of CPUE according to various threshold criteria and weighting alternatives, with 412 
predicted probabilities estimated from original Stephens-MacCall model and revised model with 413 
additional covariates. Columns compare different threshold/weighting approaches under the same model 414 
and rows compare the same threshold/weighting approach under different models. Values range between 415 
0 and 1 representing 0% successful trips and 100% successful trips, respectively. For example, the revised 416 
weighted estimate of 0.787 implies that a total of 7,912 trips potentially targeting red snapper occurred 417 
based on the 6,227 trips with observed red snapper catch. Note the sensitivity of CPUE to the different 418 
binary classification thresholds, lending support to trip weighting alternatives. Removing “non-targeted” 419 
trips had minimal impact on the revised model weighted estimate. 420 

 421 

 422 

  Original Revised 

Common 4,200 (3,698) 

Unique 615 (35) 2,206 (1,791) 

Total 4,815 (3,733) 6,406 (5,489) 

𝑹𝑴𝒄𝑭𝒂𝒅𝒅𝒆𝒏
𝟐  0.503 0.726 

Somers’ D 0.863 0.964 

 423 
Tbl. 4. Comparison of selected records between the original Stephens-MacCall model and revised model 424 
with additional covariates as applied to 2019 red snapper commercial logbook data (pcrit = 0.5 used for 425 
both). Values in parentheses denote the number of records with observed red snapper catch. Note superior 426 
performance of the revised model according to McFadden’s pseudo R2 and Somers’ D fit metrics. 427 




